
Quantifying the Programming Process
to Help Teach Incremental Development

Ayaan M. Kazerouni, SIGCSE Student Research Competition

Computer Science, Virginia Tech

February 24, 2018

1

The Problem
The programming process is complex and is not thoroughly assessed.

2

Product

Process

Post-mortem
Measures

• Correctness

• Code style

• Code coverage

Web-CAT [1], AutoLab [2],
CI

The Problem
The programming process is complex and is not thoroughly assessed.

3

Product

Process

Incremental Development

• Time management

• Effective software testing

Hackystat [3], Marmoset [4], NPSM [5],

Error Quotient [6], Watwin [7]

Post-mortem
Measures

• Correctness

• Code style

• Code coverage

Web-CAT [1], AutoLab [2],
CI

DevEventTracker

4

Add Test Method

Launch
Test Case

Breakpoin
t

Step Into

Modify
Method

Step Over

Launch
Test Case

Add Method

Edit Events
Type:

Time:

Commit:

Current-Size:

Methods:

Edit

1518815331598

acedb45

661

2

Launch Events
Type:

Time:

Status:

Test Case

1518815342813

Passed

Modelling Incremental Development
Writing, testing, and debugging small chunks of code at a time.

■ Working Early and Often

■ Software Testing Practices

5

Early/Often Index
A quantification of procrastination.

■ Early/Often Index: The average number of days until the deadline, across
all edits.

■ If E is the set of all edits made, then

𝑒𝑎𝑟𝑙𝑦𝑂𝑓𝑡𝑒𝑛(𝐸) =
∑𝑒 ∈E 𝑠𝑖𝑧𝑒(𝑒) ∗ 𝑑𝑎𝑦𝑠𝑇𝑜𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑒)

∑𝑒 ∈E 𝑠𝑖𝑧𝑒(𝑒)

6

Early/Often Index
Better Early/Often scores were related to more semantically correct programs
and earlier project completion times.

7

Project Outcome F p-value
Correctness 16.2 < 0.0001 *
Time of completion 55.9 < 0.0001 *

Mixed Model: John Doe did better on projects when he had a higher Early/Often score,
than when he had a lower one.

Incremental Test Writing *
Quantifying Solution-Test Coevolution.

■ For a given work session:

■ is the set of test edits
■ is the set of solution edits

	 across all work sessions

■ Data suggests a relationship with project correctness (F = 7.2, p = 0.007*)

𝑻𝑬
𝑺𝑬

𝑆𝑇𝐶 = 𝐴𝑣𝑔(
𝑇𝐸

𝑆𝐸 + 𝑇𝐸
)

8

Visual Feedback and Analysis

9

Fig. 1: Good Test Writing Fig. 2: Poor Test Writing

Future Work
■ Improve assessments of software testing

■ Design and implement interventions

■ Regular, adaptive emails
■ Learning dashboard

■ Assess their impact

■ Iterate

10

Contributions
■ Process-based assessments should benefit students working on large and

complex programming projects

■ Scope for adoption in the software engineering community at large

11

References
[1] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: automatically grading programming assignments. SIGCSE
Bull. 40, 3 (June 2008), 328-328. DOI=http://dx.doi.org/10.1145/1597849.1384371

[2] AutoLab: http://autolab.github.io/2015/03/autolab-autograding-for-all/

[3] Philip M. Johnson, Hongbing Kou, Joy Agustin, Christopher Chan, Carleton Moore, Jitender Miglani, Shenyan Zhen, and William E. J.
Doane. 2003. Beyond the Personal Software Process: metrics collection and analysis for the differently disciplined. In Proceedings of the
25th International Conference on Software Engineering (ICSE '03). IEEE Computer Society, Washington, DC, USA, 641-646.

[4] Jaime Spacco, William Pugh, Nat Ayewah, and David Hovemeyer. 2006. The Marmoset project: an automated snapshot, submission,
and testing system. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and
applications (OOPSLA '06). ACM, New York, NY, USA, 669-670. DOI: https://doi.org/10.1145/1176617.1176665

[5] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. 2015. The Normalized Programming State Model: Predicting
Student Performance in Computing Courses Based on Programming Behavior. In Proceedings of the eleventh annual International
Conference on International Computing Education Research (ICER '15). ACM, New York, NY, USA, 141-150. DOI: http://dx.doi.org/
10.1145/2787622.2787710

[6] Matthew C. Jadud. 2006. Methods and tools for exploring novice compilation behaviour. In Proceedings of the second international
workshop on Computing education research (ICER '06). ACM, New York, NY, USA, 73-84. DOI=http://dx.doi.org/
10.1145/1151588.1151600

[7] Christopher Watson, Frederick W. B. Li, and Jamie L. Godwin. 2013. Predicting Performance in an Introductory Programming Course by
Logging and Analyzing Student Programming Behavior. In Proceedings of the 2013 IEEE 13th International Conference on Advanced
Learning Technologies (ICALT '13). IEEE Computer Society, Washington, DC, USA, 319-323. DOI=http://dx.doi.org/10.1109/ICALT.2013.99

12

http://autolab.github.io/2015/03/autolab-autograding-for-all/

Thank you
Questions?

13

