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The Problem
The programming process is complex and is not thoroughly assessed.
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Product

Process

Post-mortem 
Measures 

• Correctness

• Code style

• Code coverage


Web-CAT [1], AutoLab [2], 
CI



The Problem
The programming process is complex and is not thoroughly assessed.
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Product

Process

Incremental Development 

• Time management

• Effective software testing


Hackystat [3], Marmoset [4], NPSM [5],

Error Quotient [6], Watwin [7]


Post-mortem 
Measures 

• Correctness

• Code style

• Code coverage


Web-CAT [1], AutoLab [2], 
CI
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Modelling Incremental Development
Writing, testing, and debugging small chunks of code at a time.


■ Working Early and Often

■ Software Testing Practices
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Early/Often Index
A quantification of procrastination. 

■ Early/Often Index: The average number of days until the deadline, across 
all edits. 

■ If E  is the set of all edits made, then


𝑒𝑎𝑟𝑙𝑦𝑂𝑓𝑡𝑒𝑛(𝐸) =
∑𝑒 ∈E 𝑠𝑖𝑧𝑒(𝑒)  ∗  𝑑𝑎𝑦𝑠𝑇𝑜𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑒)

∑𝑒 ∈E 𝑠𝑖𝑧𝑒(𝑒)
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Early/Often Index
Better Early/Often scores were related to more semantically correct programs 
and earlier project completion times.
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Project Outcome F p-value
Correctness 16.2 < 0.0001 *
Time of completion 55.9 < 0.0001 *

Mixed Model: John Doe did better on projects when he had a higher Early/Often score, 
than when he had a lower one.



Incremental Test Writing *
Quantifying Solution-Test Coevolution. 

■ For a given work session:

■  is the set of test edits 
■  is the set of solution edits 

	  across all work sessions 

■ Data suggests a relationship with project correctness (F = 7.2, p = 0.007*)

𝑻𝑬
𝑺𝑬

𝑆𝑇𝐶 = 𝐴𝑣𝑔(
𝑇𝐸

𝑆𝐸 + 𝑇𝐸
)
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Visual Feedback and Analysis
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Fig. 1: Good Test Writing Fig. 2: Poor Test Writing



Future Work
■ Improve assessments of software testing

■ Design and implement interventions 

■ Regular, adaptive emails 
■ Learning dashboard 

■ Assess their impact

■ Iterate
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Contributions
■ Process-based assessments should benefit students working on large and 

complex programming projects

■ Scope for adoption in the software engineering community at large
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Thank you
Questions?
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